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Abstract

Oscillating Water Column (OWC) machines were the first-
established class of Wave Energy Converters (WECs) for ex-
tracting renewable energy from ocean waves. However, as with
most other classes of WECs, the underlying fluid dynamics of
OWCs is poorly understood, impeding model assessments of
comparative efficiency and thus demanding expensive full-scale
sea trials. Most WECs are intended to have a natural frequency
that, ideally, resonates at incoming wave frequencies. There-
fore, modelling seeks to reduce their complex fluid dynamics
to linearisable ordinary differential equation models, enabling
engineering design.

A multiphase fluid dynamics model of an OWC is presented
that includes the compressibility of internal gases, and a pre-
liminary parameterisation of the Reynolds stresses and interfa-
cial dissipation arising from the peculiar nature of reciprocating
turbulence. On reduction to integral form, it was found that
two linear eigenmodes arise in all OWC systems: a “bubble
acoustic” mode in which gas compressibility dominates, and a
“pendulum” mode in which gravity dominates.

Introduction

An Oscillating Water Column (OWC) in its simplest form is a
vertical tube that is fixed in an inertial reference frame, with one
end immersed under a water surface, and the other end open to
the atmosphere. It behaves dynamically as a liquid pendulum.
If the water in the tube is displaced upwards and released, it will
fall back, overshoot its equilibrium position and oscillate until
dissipation damps out the motion. Its frequency of oscillation is√

g/L rad s−1, where L is the length of tube that is underwater,
and g is the acceleration due to gravity [1].

Systems based on the OWC principle have been utilised to gen-
erate electricity since the 1980s; however, it is mainly in the
last 15 years that a number of OWC prototypes have been de-
veloped and deployed worldwide [2]. Like most other Wave
Energy Converter (WEC) concepts, OWCs are intended to have
a natural frequency of oscillation that is “tuned” to be close to
the frequency of the ocean waves. When the device resonates,
maximal energy is extracted from the ocean. Most OWCs use
a bi-directional turbine mounted in the air above the water col-
umn to extract energy from the motion [2].

A key issue with all resonating WECs, including the OWC, is
the dissipation in the system. As with any damped oscillator,
if the system has low damping, the resonant peak would be
very high, delivering very high power; but this would drop to
low power when the ocean wave frequency shifts from the res-
onant ideal. In contrast, a system with high damping would
deliver much less power at resonance, but would not cause a
large drop in output if the wave frequency were to drift off-
resonance. Wave frequencies vary with geography, season, and

distant weather. Knowledge of the damping of WECs is critical
to predicting their economic performance in any given location.

Prior approaches to OWC dynamics have modelled the inter-
nal dynamics of the water column with integral forms of the
simplified Navier-Stokes equations or Euler equations. Typi-
cal examples include the works of [3]. This has generally been
done implicitly, by directly writing down mass-spring-damping
equations with the parameters unknown and to be determined,
presumably, by future experiment. Thus, the PDEs of momen-
tum and mass conservation have been modelled as ODEs which
are useful for the analysis of oscillator dynamics, and thus to
the semi-analytic estimation of efficiencies of practical interest.

Derivation of the approximate natural frequency of an OWC
from first principles is straightforward, and as a first approxi-
mation,

√
(g/L)/(2π) might be sufficient for prototype design.

However, derivation of the damping is not straightforward, and
hitherto, the extensive literature on OWCs generally assumes ar-
bitrary values. This has meant that quantitative prediction of the
most important aspect of OWC performance - its actual power
output - has not been possible.

In this paper, we outline how to model the fluid dynamics of an
OWC from first principles. We note that appropriate experimen-
tal data is not available, particularly on the turbulent dissipation,
but we identify factors that could be given numerical values if
appropriate laboratory experiments were done in the future. We
also explicitly show how the gas compressibility can provide an
additional and separate natural frequency. We do not explicitly
consider a turbine or other power extraction device, since the
focus is on the natural internal dynamics of the OWC.

Formulation

A peculiar feature of dissipation in an OWC is that the fluid
flow within it is reciprocating. A reciprocating fluid flow is an
unsteady flow that completely reverses periodically, so the mean
flow is zero. The fact that the mean flow is zero is of particular
significance when the turbulence responsible for much of the
loss of energy from the system is considered. Reciprocating
turbulence is a complex and interesting topic beyond the scope
of the present paper, but it will have to be treated somehow.
The experimental results of [4] use a reciprocating version of
the normal engineering friction factor. This approach and data
could be adapted to calculate the damping of OWC. However,
in order to utilise this or any other treatment of reciprocating
turbulence, careful thought must first be given to the normally
straightforward procedure of deriving the Reynolds stresses. To
avoid confusion with the term ‘mean flow’, we will use the term
primary flow to refer to fluid flows inside the device oscillating
with periods typical of ocean waves.

In previous work on OWCs, the equations of motion have either
been dimensional, or analyses have begun with simplified ver-



sions of the integral forms of the equations of motion in which
scaling decisions were implicit. With OWCs, there are a great
variety of regimes of geometry and operating parameters, for
which different and potentially inconsistent formulations would
be necessary. As OWC designs proliferate, it is particularly im-
portant to explicitly and rigorously consider the scaling param-
eters, as a prelude to reducing the internal fluid dynamics to the
ODEs that are necessary for effective modelling of the system.

The mass and momentum conservations in the multiphase flow
within the OWC are given by,

∂ρ∗

∂t∗
+∇

∗
j(ρ
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where τ∗i j is the viscous stress tensor which can be represented
for an isotropic fluid as
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Here the asterisks denote dimensional quantities, and ui
∗ is the

velocity vector, p∗ is the pressure, µ is the dynamic viscosity, as-
sumed constant, and ρ∗ is the density. In the following, the den-
sity of the liquid will be assumed constant, precluding shocks
or sound waves in the liquid, but the density of any gas within
the OWC device will be allowed to vary in time only. This
again precludes shocks or sound within the gas, but does permit
trapped (or partially trapped) gas volumes to be compressed and
expanded. Gas compressibility is a feature widely recognised in
the literature to provide a ‘spring’ stiffness in an OWC [5].

In a cylindrical co-ordinate system, xxx∗ = (x∗,r∗,φ), the length
scaling is

xxx∗ = Lxxx, (4)

where L is the length-scaling matrix given by

L =

L 0 0
0 D 0
0 0 D

 ,
in which L is the length scale of the device in the main di-
rection in which water flows in response to the driving waves,
the x-direction, and D is the length scale at right angles to this
main direction. For example, for a pipe-like OWC, L may be
10s of metres, while the pipe diameter D may be a few me-
tres. However, some OWCs in current use have D' 10 m. The
dynamically-significant variables are scaled with the bar rep-
resenting the primary flow, while primes represent fluctuating
variables in the usual way,

t∗ = ω−1t
u∗ = ξ̂F ω

(
Ū+ Iu′

)
,

p∗ =
ρ f gLD

ξ̂F
(P̄+ I p′),

ρ∗ = ρ f ρ

(5)

in which ω is the angular frequency of the ocean wave, ξ̂F is the
amplitude scale of the motion, for example, the amplitude of the
ocean waves which may be a few metres, I is a ‘turbulence in-
tensity’ and ρ f is the liquid density. The turbulence intensity
in non-reciprocating pipe flows is usually an empirical function
of the Reynolds number, and is used in numerical calculations
[6]; while an analogous definition may be applicable to a recip-
rocating system, for now, I is simply a small parameter.

Figure 1: Different zones in an OWC in which the aspect ra-
tio L/D is large, making it ‘pipe-like’. The x direction follows
the central axis of the curved pipe-line; gas-liquid interfaces are
meant be horizontal. In this configuration, there are two liq-
uid zones (green regions) of length S0 and S1 which trap a gas
bubble or void of length L0 between them.

For the multiphase aspect of the system, the Volume of Fluid
(VOF) Eulerian-Eulerian concept is employed (though numeri-
cal calculations are not the intent of the present paper). In the
VOF approach, the overall non-dimensional density is given by,

ρ =C+ρg(1−C), (6)

where C is the liquid volume fraction and ρg =
ρ∗g
ρ f

, is the non-

dimensional density of the gas (most likely air, though other
gases could be used in voids trapped in OWCs). The volume
fraction is given by

C(xxx) =

{
1 if xxx is in liquid
0 if xxx is in gas

,

As noted earlier, the density of the liquid, ρ f , is assumed con-
stant, while the density of the gas, ρg, is allowed to vary with
time only. The overall multiphase density ρ can vary with time,
not only because ρg can vary, but also because the interface
location can vary in an inertial reference frame. Moreover, the
interface location could vary not only owing to interface motion
with the primary frequency ω, but owing to turbulent motions.
In this regard, lateral (at right angles to x) ‘sloshing’ waves in-
side the OWC could also occur on much smaller scales than
the primary rise-and-fall due to the ocean waves. Numerical
calculations of multiphase flow would normally include such
motions, but since the present paper seeks an analytic simplifi-
cation to ODEs in x only, it is necessary to parameterise such
motions. These interfacial fluctuations were treated by [7] by
assuming the phase-indicator function C is also composed of
primary and fluctuating components, i.e.,

C = C̄+ c′ (7)

Ensemble averaging

Applying the ensemble averaging, as usual, terms in the vari-
ables with primes with powers greater than one will disappear
[8]. Applying the scalings of (5) and performing the ensem-
ble averaging to (1)-(3) gives the averaged mass conservation
equation as
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and the momentum conservation equation as
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where ρ̄ = C̄+ρg(1−C̄) and ∇∇∇ =
D
L
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Two dimensionless numbers have been introduced in the
above non-dimensional momentum equation: a Froude number,
F̂r =

(
ω2 ξ̂2

F

)
/(gL) and the kinetic Reynolds number,

Reω =
(
ρ0ωD2)/µ.

Separation of the OWC into zones

We choose to model the OWC in four separate zones: exter-
nal liquid (the open ocean water), internal liquid only, internal
gas only, and an internal interface zone which can contain both
liquid and gas. The zones are matched by the pressure at their
boundaries. The external liquid zone contributes inertia but not
significant dissipation to the system. In the internal liquid zone,
assumed incompressible as noted earlier, viscous and turbulent
dissipation cause significant damping of the overall OWC dy-
namics. In contrast, in the gas zone, momentum (and thus loss
of momentum to dissipation) is negligible, but the gas com-
pressibility must be taken into account. Thus, the role of the
gas zone is effectively to alter the pressure boundary condition
on the interface zone and thus the liquid zone. Finally, in the
interface zone, few approximations are justifiable, apart from
the simplification of the interface to zero thickness, in which
case its dynamics disappear. The interface zone may be needed
in a comprehensive OWC model if sloshing motions (waves in-
side the OWC) cause significant dissipation. It is mentioned for
completeness, although it will be neglected in the present paper.

In the internal liquid zone, C̄ = 1 and c′ = 0, giving ρ̄ = 1. As a
consequence, the conservation equations in the liquid zone can
be reduced to

∇iŪi = 0, (10)
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∇ jŪi− I2 ξ̂F

D
(u′iu

′
j)

]
.

(11)

Consider only the dynamically-significant x-component of
equation (11),
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∂Ū
∂φ

]
=− 1

F̂r
D
L

∂P̄
∂x

+
1

Reω

[
D2

L2
∂2Ū
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Now, assume the ratio L/D is large, so the internal liquid zone
of the OWC is ‘pipe-like’. As noted earlier, some currently
operating OWCs have a large D, similar to L, for which this as-
sumption would not be valid. In addition, fully developed flows

have been assumed throughout the liquid zones, neglecting re-
gions of developing flow, bends and curvature effects. Further
assuming an axisymmetric pipe flow, i.e, derivatives with re-
spect to φ are zero, the momentum equation in the x-direction
now becomes
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The last two terms of (13) are the Reynolds and viscous shear
stress, respectively; these are now combined into a total shear
stress, giving
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where the total shear stress is given by
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For generality, several liquid and gas zones are permitted. There
must always be a first vertical internal-liquid column between
the device mouth and the first gas zone. There may also be a
second internal-liquid column, with the gas trapped at the top
of the two liquid columns in a header; and the second column
could be a U-tube, permitting a second gas zone, and so on.
Any of the gas zones (in the simplest OWC configuration, there
is only one liquid and one gas zone) could drive the turbine (the
power-take-off device), though for practicalities of maintenance
it would probably be the last gas (air) zone exhausting directly
to atmosphere that drives the power-take off. As noted earlier,
for clarity we concentrate on the elementary natural frequencies
of the system, and thus do not treat the power-take-off device.
Similarly, insignificant mass of external ocean water is assumed
to be set into motion outside the device mouth; but a potential-
flow calculation to estimate this added mass would be feasible.

Integration and reduction to ODE form

On integration in r, variables ξ0 and ξ1 can be defined. These
are, respectively, the displacement of the radial-mean bound-
aries between the first mass of internal liquid and the first gas
zone, and the displacement of the boundary between the first
gas zone and a second internal liquid zone as shown in figure 1.
In this example, the interface is assumed to be of zero thickness.
Integrating (14) times 2πr with respect to r from 0 to 0.5 and
then dividing by π(0.5)2 gives,

dŪb
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=− 1

F̂r
D
L

dP̄
dx
−4τt . (16)

The paucity of relevant experimental data on reciprocating
turbulence is now the issue. Following the experimentally-
validated approach of [9], the velocity gradient in reciprocating
pipe flow is simply modelled as

β
Ūb

((D/2)/D)
= 2βŪb, (17)

where β is a factor which depends on Reω. The above-
mentioned total stress can now be defined as τt = µt(2βŪb),
where µt is a ‘total viscosity’ (dimensionless) that includes both
molecular viscosity and an eddy viscosity for reciprocating tur-
bulence, an example of which was given by [9]. In reality,
the data of [9] is unlikely to be directly applicable to a full-
scale OWC. Thus, µt is a key parameter which will demand



specialised experimental and numerical investigations in the fu-
ture for the geometry of the OWC. This approach gives rise to
a linear damping term. A quadratic damping term could also
be employed as noted in [5], and although quadratic damping
would be consistent with the ‘friction factor’ approach of [4],
the experiment of [4] is even less relevant to the OWC than that
of [9].

The boundary conditions on the liquid zones require the pres-
sure in the gas. This is given by the ideal-gas law, which relates
pressure to volume and hence to the displacements ξ0 and ξ1.
A final assumption is that the compression and expansion of the
gas is small, permitting linearisation of the ideal-gas law. (No
linearisation of the liquid-zone equation was necessary since the
geometric assumptions that lead to (13) eliminated the advec-
tive term in the primary velocity.) Upon linearisation of the
ideal-gas expression, and finally integration in x, the internal
liquid-zone equations reduce to
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D
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where F(t) represents the force produced by ocean waves at the
mouth, and
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B0 = 8µtβ0, B1 = 8µtβ1,

where β0 and β1 are the values of β for the liquid zones,
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and S0, L0, S1, H0, H1, h0 and h1 are dimensional lengths de-
fined in figure 1, and γ is the ratio of specific heats for the gas,
assumed to be adiabatically compressed.

Results

Figure 2 shows an example of the response of a ‘pipe-like’
OWC device with one trapped ‘bubble’ or void and two liq-
uid columns on either side, as drawn in figure 1. It can be seen
in that there are two roots corresponding to the eigenvalues of
(18). The range of frequencies chosen corresponds to typical
ocean swell with periods of the order of 10 s. The ‘pendulum’
mode frequency is about 0.13 Hz. However, gas compressibil-
ity, enforced in this example by trapping gas between two water
masses, introduces of a second degree of freedom, creating a
second mode of oscillation. The existence of a second mode
of oscillation corresponds to a ‘bubble-acoustic’ mode in which
the gas is compressed and expanded.

Conclusion

Oscillating water columns are a simple fluid resonators that can
extract power from ocean waves. Ideally, predicting their per-
formance requires ODE models of their dynamics, which hith-
erto have been heuristic in form without clarity on the exact
assumptions employed. We have determined the assumptions
needed to rigorously derive an ODE model of the fluid elements
of an OWC. Dissipative terms due to reciprocating turbulence
have been identified. Crude approximations to these can be ex-
tracted from existing literature. Above all, however, future ex-
perimental programmes on reciprocating multiphase turbulence
are warranted and can be guided by the needs of the present
model.
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Figure 2: Frequency response plot (Bode magnitude diagram)
for parameters S0 = S1 = 20 m, D = 2 m and for the machine
mounted close to the surface, so the ambient pressure and tem-
perature are standard atmospheric. The zero-damping curve (in
red) has been truncated at its peaks.

It is shown that the model admits two modes, one due to the
‘pendulum’ like behaviour of the OWC, and one due to the
‘bubble-acoustic’ like behaviour of the OWC.

Neighbouring OWCs may be coupled by sea-surface wave radi-
ation, leading to multiple eigenmodes. This understanding may
lead to methods for optimising OWCs and multiply-connected
“farms” of OWCs to maximise efficiency.
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